To solve the problem of finding the mean and variance for the given data, we will break it down into two parts as outlined in the question.
### Part (i): Mean and Variance of the first n Natural Numbers
1. **Identify the Data**:
The first n natural numbers are: \( 1, 2, 3, \ldots, n \).
2. **Calculate the Mean**:
The mean \( \bar{x} \) is calculated using the formula:
\[
\bar{x} = \frac{\text{Sum of all observations}}{\text{Total number of observations}} = \frac{1 + 2 + 3 + \ldots + n}{n}
\]
The sum of the first n natural numbers is given by the formula:
\[
S_n = \frac{n(n + 1)}{2}
\]
Therefore, the mean becomes:
\[
\bar{x} = \frac{\frac{n(n + 1)}{2}}{n} = \frac{n + 1}{2}
\]
3. **Calculate the Variance**:
The variance \( \sigma^2 \) is calculated using the formula:
\[
\sigma^2 = \frac{\sum x_i^2}{n} - \bar{x}^2
\]
The sum of the squares of the first n natural numbers is given by:
\[
\sum x_i^2 = \frac{n(n + 1)(2n + 1)}{6}
\]
Thus, the variance becomes:
\[
\sigma^2 = \frac{\frac{n(n + 1)(2n + 1)}{6}}{n} - \left(\frac{n + 1}{2}\right)^2
\]
Simplifying this gives:
\[
\sigma^2 = \frac{(n + 1)(2n + 1)}{6} - \frac{(n + 1)^2}{4}
\]
Finding a common denominator (12):
\[
\sigma^2 = \frac{2(n + 1)(2n + 1) - 3(n + 1)^2}{12}
\]
Expanding and simplifying:
\[
\sigma^2 = \frac{(n + 1)(2n + 1 - 3(n + 1))}{12} = \frac{(n + 1)(n - 2)}{12}
\]
### Part (ii): Mean and Variance of the First 10 Multiples of 3
1. **Identify the Data**:
The first 10 multiples of 3 are: \( 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 \).
2. **Calculate the Mean**:
The mean \( \bar{x} \) is calculated as:
\[
\bar{x} = \frac{3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30}{10}
\]
The sum is:
\[
3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30 = 165
\]
Therefore, the mean is:
\[
\bar{x} = \frac{165}{10} = 16.5
\]
3. **Calculate the Variance**:
The variance \( \sigma^2 \) is calculated using:
\[
\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n}
\]
First, we calculate \( x_i - \bar{x} \) for each \( x_i \):
- For \( 3 \): \( 3 - 16.5 = -13.5 \)
- For \( 6 \): \( 6 - 16.5 = -10.5 \)
- For \( 9 \): \( 9 - 16.5 = -7.5 \)
- For \( 12 \): \( 12 - 16.5 = -4.5 \)
- For \( 15 \): \( 15 - 16.5 = -1.5 \)
- For \( 18 \): \( 18 - 16.5 = 1.5 \)
- For \( 21 \): \( 21 - 16.5 = 4.5 \)
- For \( 24 \): \( 24 - 16.5 = 7.5 \)
- For \( 27 \): \( 27 - 16.5 = 10.5 \)
- For \( 30 \): \( 30 - 16.5 = 13.5 \)
Now, squaring these results:
- \( (-13.5)^2 = 182.25 \)
- \( (-10.5)^2 = 110.25 \)
- \( (-7.5)^2 = 56.25 \)
- \( (-4.5)^2 = 20.25 \)
- \( (-1.5)^2 = 2.25 \)
- \( (1.5)^2 = 2.25 \)
- \( (4.5)^2 = 20.25 \)
- \( (7.5)^2 = 56.25 \)
- \( (10.5)^2 = 110.25 \)
- \( (13.5)^2 = 182.25 \)
Summing these squared values:
\[
182.25 + 110.25 + 56.25 + 20.25 + 2.25 + 2.25 + 20.25 + 56.25 + 110.25 + 182.25 = 742.5
\]
Finally, the variance is:
\[
\sigma^2 = \frac{742.5}{10} = 74.25
\]
### Summary of Results
- For the first n natural numbers:
- Mean: \( \frac{n + 1}{2} \)
- Variance: \( \frac{(n + 1)(n - 2)}{12} \)
- For the first 10 multiples of 3:
- Mean: \( 16.5 \)
- Variance: \( 74.25 \)