Home
Class 12
MATHS
" If "f(x)={[3x^(2)+12x-1,-1],[37-x,2]...

" If "f(x)={[3x^(2)+12x-1,-1],[37-x,2]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=3x^(2)+12x-1,-1lexle2,=37-x,2ltxle3 , then :

If f(x)={(3x^2+12x-1,-1lexle2),(37-x,2ltxle3):}

Iff(x)={3x^2+12 x-1,-1lt=xlt=2 37-x ,2

Iff(x)={3x^2+12 x-1,-1lt=xlt=2 37-x ,2

Iff(x)={3x^2+12 x-1,-1lt=xlt=2 37-x ,2

If f(x)={{:(3x^(2)+12x-1",",-1lexle2),(37-x",",2ltxle3):} , Then

f(x)={{:(3x^(2)+12x-1,-1lexle2),(37-x",",2ltxle3):} Which of the following statements is /are correct? 1. f(x) is increasing in the interval [-1,2]. 2. f(x) is decreasing in the interval (2,3]. Select the correct answer using the code given below:

If f(x) = {(3x^(2) + 12x - 1, -1 le x le 2),(" "37-x, 2 lt x le 3):} , show that f(x) is increasing in [-1, 2]

If f(x) = {(3x^(2) + 12x - 1, -1 le x le 2),(" "37-x, 2 lt x le 3):} , show that f'(x) does not exist at x = 2

If f(x) = {(3x^(2) + 12x - 1, -1 le x le 2),(" "37-x, 2 lt x le 3):} , show that f(x) has maximum value at x = 2.