Home
Class 11
MATHS
" The value of "sum(r=1)^(n)(1)/(sqrt(a+...

" The value of "sum_(r=1)^(n)(1)/(sqrt(a+rx)+sqrt(a+(r-1))x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of sum_(x=1)^(n)(-1)^(r+1)(C(n,r))/(r+1) is equal to

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5