Home
Class 12
MATHS
The sum of all possible values of x sati...

The sum of all possible values of `x` satisfying the equation `6log_(x-1)10+log_10 (x-1)=5`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Find the sum of all possible values of x satisfying simultaneous the equations log^(2)x3log x=log(x^(2))4 and log^(2)(100x)+log^(2)(10x)=14+log((1)/(x)).[ Note : Assume base of logarithm is 10.1]

The sum of all the values of a satisfying the equation |[log_10 a,-1],[log_10(a-1),2]|=log_10 a+log_10 2

The sum of all the values of a satisfying the equation |[log_10 a,-1],[log_10(a-1),2]|=log_10 a+log_10 2

Find the sum of all possible values of x satisfying the equation sqrt(x^(2)-4x+4)=(log_(2)9)(log_(3)sqrt(5))(log_(25)256)

Sum of all possible values of 'x' which satisfy the equation log_(3)(x – 3) = log_(9)(x – 1) is :

The sum of all the values of a satisfying the equation a,-1det[[log_(10)(a-1),2]]=log_(10)a+log_(10)2

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is