Home
Class 12
MATHS
With 11,13 ,sqrt(290+143sqrt(3)) as side...

With `11,13 ,sqrt(290+143sqrt(3))` as sides

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(x-4)+3=sqrt(x+11)

If 7,4 sqrt(3), sqrt(13) , are the sides of DeltaABC then least angle is

Show that 1/(sqrt11+3) , 1/(sqrt13+3) , 1/(sqrt11+sqrt13) are in A.P.

Let z_(1)=(2sqrt(3)+ i6sqrt(7))/(6sqrt(7)+ i2sqrt(3))" and "z_(2)=(sqrt(11)+ i3sqrt(13))/(3sqrt(13)- isqrt(11)) . Then |(1)/(z_1)+(1)/(z_2)| is equal to

Slove (3-sqrt(11)) (3+ sqrt(11))

sin[(1)/(2)cot^(-1)((2)/(3))]= sqrt((sqrt(13)-2)/(2sqrt(13))) (2+sqrt(13))/(2sqrt(13)) sqrt((2-sqrt(13))/(2sqrt(13))) (2-sqrt(13))/(2sqrt(13))

Multiply 5 sqrt(11) by 3sqrt(11)

Do as directed: (i) Add : sqrt(125 + 2 sqrt(27) and - 5 sqrt(5) - sqrt(3) (ii) Add: sqrt(7) - sqrt(11) and sqrt(5) - sqrt(11) + sqrt(13) (iii) Multiply : 2 sqrt(2) by 5 sqrt(2) (iv) Multiply : (-3 + sqrt(5)) by 3 (v) Divide : 7 sqrt(5) by - 14 sqrt(125) Divide : 7 sqrt(5) by -14 sqrt(125) (vi) Divide : 2 sqrt(216) - 3 sqrt(27) by 3

In a DeltaABC , the median to the side BC is of length 1/sqrt(11-6sqrt3) and it divides the angleA into angles 30^@ and 45@. Find the length of the side BC.