Home
Class 12
MATHS
In a triangle ABC, if (b+c) / 11 = (c+a)...

In a triangle `ABC`, if `(b+c) / 11 = (c+a) / 12 = (a+b) / 13` then ` cosA / l = cosB / m = cosC / n` where `l, m, n` are least positive integer. Find the value of `(l+m+n)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC (b+c)/11=(c+a)/12=(a+b)/13 then prove that (cosA)/7=(cosB)/19=(cosC)/25

In triangle ABC, if (b+c)/9=(c+a)/10=(a+b)/11,then (cosA+cosB)/cosC=

In DeltaABC, (b+c)/(11) = (c+a)/(12)=(a+b)/(13) , prove that: cosA:cosB:cosC=?

In DeltaABC,(b+c)/(11)=(c+a)/(12)=(a+b)/(13) then prove that (cosA)/(7)=(cosB)/(19)=(cosC)/(25) .

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

With usual notations, if in a triangle A B C(b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then prove that: (cosA)/7=(cosB)/(19)=(cosC)/(25)

With usual notations, if in a triangle A B C(b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then prove that: (cosA)/7=(cosB)/(19)=(cosC)/(25)