Home
Class 11
MATHS
L e t|z1|=c/2t h e n|z1+z2|^2+|z1-z2|^2=...

`L e t|z_1|=c/2t h e n|z_1+z_2|^2+|z_1-z_2|^2=(1)c^2` (I) c2(2) c2/2(3) 2 c2(4) none

Promotional Banner

Similar Questions

Explore conceptually related problems

Let |z_(1)|=(c)/(2)then|z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=(1)c^(2) (I) c2(2)c2/2(3)2c2(4) none

If z_1,z_2,z_3 be the vertices A,B,C respectively of triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|=|z_1-z_2| then C= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If z_1,z_2,z_3 be the vertices A,B,C respectively of triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|=|z_1-z_2| then C= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these

If z_1, z_2 in C , then say which are true and false - . |z_1+z_2|^2=|z_1""|^2+|z_2|^2-2R e(z_1 z_2) |z_1-z_2|^2=|z_1""|^2-|z_2|^2-2R e(z_1 z_2) |z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2) |a z_1-b z_2|^2+|b z_1+a z_2|^2=(a^2+b^2)(|z_1|^2+|z_2|^2) , where a ,b in Rdot

If |z_1|=15a d n|z_2-3-4i|=5,t h e n a. (|z_1-z_2|)_(min)=5 b. (|z_1-z_2|)_(min)=10 c. (|z_1-z_2|)_(m a x)=20 d. (|z_1-z_2|)_(m a x)=25

If |z_1|=|z_2| then z_1/z_2+z_2/z_1= (A) 2costheta (B) -2costheta (C) 2sintheta (D) -2sintheta

The points A(z_1), B(z_2) and C(z_3) form an isosceles triangle in the Argand plane right angled at B, then (z_1-z_2)/(z_3-z_2) can be (A) 1 (B) -1 (C) -i (D) none of these