Home
Class 12
MATHS
Prove that the lines x=ay +b,z =cy +d...

Prove that the lines x=ay +b,z =cy +d and x=a'y +b' z =c'y +a'
are perpendicular if aa'+cc' +1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the lines x = ay + b, z = cy + d and x = a'y + b' , z= c'y + d' are perpendicular, if a a' + c c' + 1=0

If the lines x=ay +b, z=cy+d and x=a'y + b', z=c'y + d' are perpendicular, then

Prove that if the lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendiclar to each other aa' + cc' + 1 = 0.

If lines x=ay+b, z= cy +d " and " x=a' z+b y=c' z+ d' are perpendicular then

If lines x=ay+b, z= cy +d " and " x=a' z+b y+c' z+ d' are perpendicular then

The two lines x=ay+b, z=cy+d and x=a'y+b', z=c'y+d' are perpendicular to each other if :

The two lines x=ay+b, z=cy+d and x=a'y+b', z=c'y+d will be perpendicular ,if and only if

Fid the condition if lines x=ay+b,z=cy+d and x=a'y+b',z=c'y+d are perpendicular.