Home
Class 12
MATHS
" 9."tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(1+...

" 9."tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(1+x+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

cot(tan^(-1)x+cot^(-1)x)

cot^(-1)x=tan^(-1)x then

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)