Home
Class 10
MATHS
" 16."(sqrt(3x^(2)+1))/(sqrt(3x^(2)+1))=...

" 16."(sqrt(3x^(2)+1))/(sqrt(3x^(2)+1))=5

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of proportion, solve for x : (i) (sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3) (ii) (sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2) . (iii) (3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5 .

If n be the degree of the polynomial sqrt(3x^(2)+1){(x+sqrt(3x^(2)+1))^(7)-(x-sqrt(3x^(2)+1))^(7)} then n is divisible by

Find the domain of f(x) = sqrt(x^(2)-1) + (1)/(sqrt(x^(2)-3x+2))

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

If (sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))=3 then x=1)sqrt((2)/(3)2)sqrt((1)/(3))3)sqrt((2)/(5))sqrt((3)/(5))

lim_ (x rarr oo) (sqrt (3x ^ (2) +1) -sqrt (2x ^ (2) -3x + 5)) / (7x + 2) =

The domain of (1)/(sqrt(x-x^(2)))+sqrt(3x-1-2x^(2)) is

Lt_(x to oo) (sqrt(3+9x^(2))+sqrt(4x^(2)-1))/(sqrt(1+16x^(2))-sqrt(9x^(2)+2))=

int(2x+5)/(sqrt(x^(2)+3x+1))

lim_(x rarr oo)((sqrt(x^(2)+5)-sqrt(x^(2)-3))/(sqrt(x^(2)+3)-sqrt(x^(2)+1)))