Home
Class 11
MATHS
Tangents are drawn from the points on a ...

Tangents are drawn from the points on a tangent of the hyperbola `x^2-y^2=a^2` to the parabola `y^2=4a xdot` If all the chords of contact pass through a fixed point `Q ,` prove that the locus of the point `Q` for different tangents on the hyperbola is an ellipse.

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangents are drawn from the points on a tangent of the hyperbola x^(2)-y^(2)=a^(2) to the parabola y^(2)=4ax. If all the chords of contact pass through a fixed point Q, prove that the locus of the point Q for different tangents on the hyperbola is an ellipse.

Tangents are drawn from points of the parabola y^(2)=4ax to the parabola y^(2)=4b(x-c) . Find the locus of the mid point of chord of contact.

Tangents are drawn from any point on the line x+4a=0 to the parabola y^2=4a xdot Then find the angle subtended by the chord of contact at the vertex.

Tangents are drawn from any point on the line x+4a=0 to the parabola y^2=4a xdot Then find the angle subtended by the chord of contact at the vertex.

Tangents are drawn from any point on the line x+4a=0 to the parabola y^2=4a xdot Then find the angle subtended by the chord of contact at the vertex.

Tangents are drawn from any point on the line x+4a=0 to the parabola y^2=4a xdot Then find the angle subtended by the chord of contact at the vertex.

Tangents are drawn from the points on the line x-y-5=0 to x^(2)+4y^(2)=4. Then all the chords of contact pass through a fixed point. Find the coordinates.

Tangents are drawn from the point (-1, 2) to the parabola y^2 =4x The area of the triangle for tangents and their chord of contact is

Tangents are drawn from the point (-1, 2) to the parabola y^2 =4x The area of the triangle for tangents and their chord of contact is