Home
Class 14
MATHS
" Given that "sin alpha=(1)/(2)" and "co...

" Given that "sin alpha=(1)/(2)" and "cos beta=(1)/(2)," then the value of "(alpha+beta)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha=1/2 and cos beta=1/2 then alpha+beta=

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin beta

If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin(beta

If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin beta

if alpha and beta satisfy sin alpha cos beta=-(1)/(2), then the greatest value of 2cos alpha sin beta is

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is