Home
Class 12
MATHS
Let f(x)=(x^(2)+2)/([x]),1 le x le3, whe...

Let `f(x)=(x^(2)+2)/([x]),1 le x le3`, where [.] is the greatest integer function. Then the least value of f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)={1+|x|,x<-1[x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2,3)}dot

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f[-3,3]rarr R where f(x)=x^(3)+sin x+[(x^(2)+2)/(a)], be an odd function (where [.] represents greatest integer function).Then the value of a is

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

Let f(x)=|x|+[x-1], where [ . ] is greatest integer function , then f(x) is