Home
Class 12
MATHS
If alpha,beta and gamma be the roots of ...

If `alpha,beta` and `gamma` be the roots of the equation `x^(3)+px+q=0`, find value of `Sigma x^(5)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 find the value of (beta+gamma)(gamma+alpha)(alpha+beta)

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then find he value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta))

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 then the value of sum alpha^(2)beta=

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

If alpha, beta and gamma are the roots of the equation x^(3) + px + q = 0 (with p != 0 and p != 0 and q != 0 ), the value of the determinant |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha,beta& gamma are the roots of the equation x^(3)+px+q=0, then the value of the det[[alpha,beta,gammabeta,gamma,alphagamma,alpha,beta]] is