Home
Class 11
MATHS
Let tan(2pi|sintheta|)=cot(2pi|costheta|...

Let `tan(2pi|sintheta|)=cot(2pi|costheta|)` , where `theta in R` and `f(x)=(|sintheta|+|costheta"|"")"^x ,xgeq1.` The range of `f(x)` include 1 (b) 2 (c) 3 (d) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Let tan(2 pi|sin theta|)=cot(2 pi|cos theta|), where theta in R and f(x)=(|sin theta|+|cos theta|)^(x),x>=1. The range of f(x) include 1( b ) 2(c)3(d)4

(sintheta-costheta+1)/(sintheta+costheta-1) (where theta ne (pi)/(2)) is equal to

If z = (3+isintheta)/(4-icostheta) is purely real and theta in (pi/2,pi) ,then arg(sintheta + i costheta) is -

(2sintheta)/(costheta(1+tan^(2)theta)) simplifies to :

If sintheta + 2 costheta=1 ,then prove that 2sintheta-costheta=2 .

If cosec^(2)theta+cot^(2)theta=7 find sintheta&costheta

Solve for x : x^2 - ( sintheta + costheta ) x + sintheta costheta = 0

Prove that sintheta (1 + Costheta) is the greatest at theta=pi/3

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2sectheta