Home
Class 12
MATHS
If f(x)=x^(2)-4 and g(x)=[x] ([.] denote...

If `f(x)=x^(2)-4` and `g(x)=[x]` ([.] denotes greatest integer function), then the number of negative values in the range of `g(f(x))` are.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

Let f(x)=(x)/(1+x^(2)) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

draw the graph of f(x)=x+[x.] denotes greatest integer function.

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)