Home
Class 12
MATHS
f(x)=1/sqrt([x]^(2)-[x]-6), where [*] de...

`f(x)=1/sqrt([x]^(2)-[x]-6)`, where `[*]` denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then