Home
Class 11
MATHS
Find the value of (1)/(tan theta)+(sin t...

Find the value of `(1)/(tan theta)+(sin theta)/(1+cos theta)` if `1+cot^(2)theta=(sqrt(3+2sqrt(2))-1)^(2)` (`theta` is an acute angle)

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta=sqrt2-1 then sin theta cos theta=

Find an acute angle theta when (cos theta-sin theta)/(cos theta+sin theta)=(1-sqrt(3))/(1+sqrt(3))

Find an acute angle theta, when (cos theta-sin theta)/(cos theta+sin theta)=(1-sqrt(3))/(1+sqrt(3))

Write the value of sin^(2)theta cos^(2)theta(1+tan^(2)theta)(1+cot^(2)theta).

If (sin theta + cos theta )=sqrt(2) cos theta , show that cot theta =(sqrt(2)+1).

if (sin theta-cos theta)/(sin theta+cos theta)=(sqrt(3)-1)/(sqrt(3)+1) then find the theta

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

tan theta=-(1)/(sqrt(3)),sin theta=(1)/(2) and cos theta=-(sqrt(3))/(2)

If sin theta=1/sqrt2 then tan theta+cos theta=

The value of ((sin theta -cos theta )(1+tan theta + cot theta ))/(1+sin theta cos theta ) = ?