Home
Class 12
MATHS
Area of the region bounded by [x]^(2)=[y...

Area of the region bounded by `[x]^(2)=[y]^(2)` ,if `x in[1,3]` (where [ .] denotes the greatest integer function),is less than

Promotional Banner

Similar Questions

Explore conceptually related problems

Area of the region bounded by [x] ^(2) =[y] ^(2), if x in [1,5] , where [ ] denotes the greatest integer function is:

If f(x)=[2x], where [.] denotes the greatest integer function,then

The range of the function y=[x^(2)]-[x]^(2)x in[0,2] (where [] denotes the greatest integer function),is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Solve in R: x^2+ 2[x] = 3x where [.] denotes greatest integer function.