Home
Class 12
MATHS
The value of Lim(n rarr oo)sum(k=1)^(n)(...

The value of `Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

The value of lim sum_(k=1)^(n)(n-k)/(n)cos((4k)/(n)) equals to

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

The value of lim_(n rarr oo)sum_(i=1)^(n)(i)/(n^2)sin((pi i^(2))/(n^(2))) is equal to

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to