Home
Class 11
MATHS
If z = (sqrt(2) - sqrt(-3)), find Re(z),...

If `z = (sqrt(2) - sqrt(-3))`, find Re(z), Im(z), `bar(z) and |z|`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1| = |z-5| and |z|=sqrt(13) then find |Im(z)|

If |z-1|=|z-5| and |z|=sqrt13 ,then find |Im(z)|

If z=[((sqrt(3))/(2))+(i)/(2)]^(5)+[((sqrt(3))/(2))-(i)/(2)]^(5) then Re(z)=0 b.Im(z)=0 c.Re(z)>0 d.Re(z)>0,Im(z)<0

Given z=(1+isqrt(3))^(100), then [Re(z)//Im(z)] equals (a) 2^(100) b. 2^(50) c. 1/(sqrt(3)) d. sqrt(3)

Given z=(1+isqrt(3))^(100), then [Re(z)//Im(z)] equals (a) 2^(100) b. 2^(50) c. 1/(sqrt(3)) d. sqrt(3)

Given z=(1+isqrt(3))^(100), then [Re(z)//Im(z)] equals (a) 2^(100) b. 2^(50) c. 1/(sqrt(3)) d. sqrt(3)

If z = x + iy, find in rectangular form. Im (3z + 4bar(z) - 4i)

Let P point denoting a complex number z on the complex plane. i.e. z=Re(z)+i Im(z)," where "i=sqrt(-1) if Re(z)=xand Im (z)=y,then z=x+iy Number of integral solutions satisfying the eniquality |Re(z)|+|Im(z)|lt21,.is

Let P point denoting a complex number z on the complex plane. i.e. z=Re(z)+i Im(z)," where "i=sqrt(-1) if Re(z)=xand Im (z)=y,then z=x+iy Number of integral solutions satisfying the eniquality |Re(z)|+|Im(z)|lt21,.is

Let P point denoting a complex number z on the complex plane. i.e. z=Re(z)+i Im(z)," where "i=sqrt(-1) if Re(z)=xand Im (z)=y,then z=x+iy Number of integral solutions satisfying the eniquality |Re(z)|+|Im(z)|lt21,.is