Home
Class 12
MATHS
If An=int0^(pi/2)(sin(2n-1)x)/(s in x)"d...

If `A_n=int_0^(pi/2)(sin(2n-1)x)/(s in x)"dx";"B"_"n"=int_0^("pi"/2)(("s i n n x")/(s in x))^2"dx";"f o rn" in "N","t h e n"` `A_(n+1)-A_n` b. `B_(n+1)-B_n` c. `A_(n+1)-A_n=B_(n+1)` d. `B_(n+1)-B_n=A_(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If quad A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx;B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx; for n in N, then

IfA_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b_n=int_0^(pi/2)((sinn x)/(sinx))^2dxforn in N , Then (a) A_(n+1)=A_n (b) B_(n+1)=B_n (c) A_(n+1)-A_n=B_(n+1) (d) B_(n+1)-B_n=A_(n+1)

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

IfA_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b_n=int_0^(pi/2)((sinn x)/(sinx))^2dxforn in N , Then A_(n+1)=A_n (b) B_(n+1)=B_n A_(n+1)-A_n=B_(n+1) (d) B_(n+1)-B_n=A_(n+1)

A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx;B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx; for n in N then A_(n+1)=A_(n)( b) B_(n+1)=B_(n)A_(n+1)-A_(n)=B_(n+1)(d)B_(n+1)-B=A_(n+1)

If A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx,B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx for n in N, Then (A)A_(n+1)=A_(n)(B)B_(n+1)=B_(n)(C)A_(n+1)-A_(n)=B_(n+1)(D)B_(n+1)-B_(n)=A_(n+1)

If I_n=int_0^(pi/2) (sin(2n-1)x)/sinx)dx , and a_n=int_0^(pi/2) ((sinntheta)/sintheta)^2 d theta , then a_(n+1)-a_n= (A) I_n (B) 2I_n (C) I_(n+1) (D) 0

Given that a_(n)=int_(0)^(pi) (sin^(2){(n+1)x})/(sin2x)dx What is a_(n-1)-a_(n-4) equal to ?

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi