Home
Class 11
MATHS
सिद्ध कीजिए कि 3 (sin A - cos A)^(4)...

सिद्ध कीजिए कि
` 3 (sin A - cos A)^(4) + 6 (sin A+ cos A)^(2)`
` + 4 ( sin^(6) A + cos^(6) A)= 13 `

Promotional Banner

Similar Questions

Explore conceptually related problems

3(sin x + cos x )^(4) + 6(sin x - cos x )^(2) + 4(sin^(6) x + cos^(6) x )=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

Show that : 3 (sin x - cos x)^4 + 6 (sin x + cos x)^2 + 4(sin^6 x + cos^6 x) = 13 .

2 [ sin x - cos x ]^(4) + 6 [ sin x + cos x ]^(2) + 5 [ sin^(6)x + cos^(6) x ] = ? (a)6 (b)4 (c)3 (d)13

If sin A + cos A =m then sin ^6 A + cos ^6 A is

sin ^ (6) A + cos ^ (6) A = 1-3sin ^ (2) A cos ^ (2) A