Home
Class 12
MATHS
The integral int[2x^[12]+5x^9]/[x^5+x^3...

The integral `int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx` is equal to-

A

`(-x^(5))/((x^(5)+x^(3)+1)^(2))+C`

B

`(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

C

`(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C`

D

`(-x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I=int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=int(2x^(12)+5x^(9))/(x^(15)(1+x^(-2)+x^(-5))^(3))dx`
`=int(2x^(-3)+5x^(-6))/((1+x^(-2)+x^(-5))^(3))dx`
Now, put `1 + x^(-2)+ x^(-5) = t`
`rArr (-2x^(-3)-5x^(-6))dx=dt`
`rArr (2x^(-3)+5x^(-6))dx=dt`
`therefore I= - int(dt)/(t^(3))=-int t^(-3)dt`
`=-(t^(-3+1))/(-3+1)+C=(1)/(2t^(2))+C`
`=(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of the integral int_(1)^(5)(|x-3|+|1-x|)dx is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to: (Here C is a constant of integration)

The integral int(1)/(4sqrt((x-1)^(3)(x+2)^(5)) dx is equal to (where c is a constant of integration)

Integrate int_1^2x^3dx

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to:

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to

The integral int(2x-3)/((x^(2)+x+1)^(2)).dx is equal to

The integral I = int (dx)/((x+1)^(3//4)(x-2)^(5//4)) is equal to