Home
Class 12
MATHS
(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos....

`(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8))` is equal to

A

`(1)/(2)`

B

`cos.(pi)/(8)`

C

`(1)/(8)`

D

`(1+sqrt(2))/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \cos(\frac{\pi}{8}))(1 + \cos(\frac{3\pi}{8}))(1 + \cos(\frac{5\pi}{8}))(1 + \cos(\frac{7\pi}{8}))\), we can follow these steps: ### Step 1: Use the cosine identity We know that \(\cos(\frac{5\pi}{8}) = -\cos(\frac{3\pi}{8})\) and \(\cos(\frac{7\pi}{8}) = -\cos(\frac{\pi}{8})\). Therefore, we can rewrite the expression as: \[ (1 + \cos(\frac{\pi}{8}))(1 + \cos(\frac{3\pi}{8}))(1 - \cos(\frac{3\pi}{8}))(1 - \cos(\frac{\pi}{8})) \] ### Step 2: Group the terms Now, we can group the terms: \[ [(1 + \cos(\frac{\pi}{8}))(1 - \cos(\frac{\pi}{8}))][(1 + \cos(\frac{3\pi}{8}))(1 - \cos(\frac{3\pi}{8}))] \] ### Step 3: Apply the difference of squares Using the identity \(a^2 - b^2 = (a + b)(a - b)\): \[ = \sin^2(\frac{\pi}{8}) \cdot \sin^2(\frac{3\pi}{8}) \] ### Step 4: Use the double angle formula We know that \(\sin(\frac{3\pi}{8}) = \cos(\frac{\pi}{8})\) (since \(\frac{3\pi}{8} + \frac{\pi}{8} = \frac{\pi}{2}\)). Therefore: \[ \sin^2(\frac{3\pi}{8}) = \cos^2(\frac{\pi}{8}) \] ### Step 5: Substitute back into the expression Now, substituting this back, we have: \[ \sin^2(\frac{\pi}{8}) \cdot \cos^2(\frac{\pi}{8}) \] ### Step 6: Use the identity for sine and cosine Using the identity \(\sin(2\theta) = 2\sin(\theta)\cos(\theta)\): \[ = \frac{1}{4} \sin^2(\frac{\pi}{4}) = \frac{1}{4} \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{8} \] ---

To solve the expression \((1 + \cos(\frac{\pi}{8}))(1 + \cos(\frac{3\pi}{8}))(1 + \cos(\frac{5\pi}{8}))(1 + \cos(\frac{7\pi}{8}))\), we can follow these steps: ### Step 1: Use the cosine identity We know that \(\cos(\frac{5\pi}{8}) = -\cos(\frac{3\pi}{8})\) and \(\cos(\frac{7\pi}{8}) = -\cos(\frac{\pi}{8})\). Therefore, we can rewrite the expression as: \[ (1 + \cos(\frac{\pi}{8}))(1 + \cos(\frac{3\pi}{8}))(1 - \cos(\frac{3\pi}{8}))(1 - \cos(\frac{\pi}{8})) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise GRAPH AND CONDITIONAL IDENTITIES|9 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise MAXIMA AND MINIMA|4 Videos
  • TRIGONOMETRICAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 PROBLEMS BASED ON MAXIMUM AND MINIMUM OBJECTEIVE QUESTIONS I (ONLY ONE CORRECT OPTION)|9 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II) (Analytical & Descriptive Questions|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (1+cos(pi/8))(1+cos(3pi/8))(1+cos(5pi/8))(1+cos (7pi/8))

Find the value of: (1+cos""(pi)/(8))(1+cos""(3pi)/(8))(1+cos""(5pi)/(8))(1+cos""(7pi)/(8))=?

The value of cos(pi)/(8)cos(3 pi)/(8)cos(5 pi)/(8)cos(7 pi)/(8) is equal to

Prove that: (1+cos(pi)/(8))(1+cos(3 pi)/(8))(1+cos(5 pi)/(8))(1+cos(7 pi)/(8))=(1)/(8)

The value of (1+(cos pi)/(8))(1+(cos(3 pi))/(8))(1+(cos(5 pi))/(8))(1+(cos(7 pi))/(8))is(a)1/4(b)3/4(c)1/8(d)3/8

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =

cos^(-1)((cos(7 pi))/(5)) is equal to

Prove that (1 + cos(pi/8))(1 + cos(3pi/8))(1 + cos(5pi/8))(1 + cos(7pi/8)) = 1/8

The value of (1+cos((pi)/(9)))(1+cos((3 pi)/(9)))(1+cos((5 pi)/(9)))(1+cos((7 pi)/(9)))