Home
Class 12
MATHS
If x >1 , then write the value of sin...

If `x >1` , then write the value of `sin^(-1)((2x)/(1+x^2))` in terms of `tan^(-1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

Write the value of tan^(-1)(1/x) for x<0 in terms of cot^(-1)(x) .

Write the value of tan^(-1)(1/x) for x<0 in terms of cot^(-1)(x) .

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1)((2x)/(1 - x^(2))) - tan^(-1) x)

write the value of sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) .

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)