Home
Class 12
MATHS
Determine whether each of the following...

Determine whether each of the following relations are reflexive, symmetric and transitive:
(i) Relation R in the set A = {1, 2, 3, ..., 13, 14} defined as R = {(x, y) : 3x – y = 0}
(ii) Relation R in the set N of natural numbers defined as R = {(x, y) : y = x + 5 and x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y) : y is divisible by x}
(iv) Relation R in the set Z of all integers defined as R = {(x, y) : x – y is an integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) R = {(x, y) : x and y work at the same place}
(b) R = {(x, y) : x and y live in the same locality}
(c) R = {(x, y) : x is exactly 7 cm taller than y}
(d) R = {(x, y) : x is wife of y}
(e) R = {(x, y) : x is father of y}

Promotional Banner

Similar Questions

Explore conceptually related problems

Determine whether each of the following relations are reflexive, symmetric and transitive: (i) Relation R in the set A = {1, 2, 3, ..., 13, 14} defined as R = {(x, y) : 3x – y = 0} (ii) Relation R in the set N of natural numbers defined as R = {(x, y) : y = x + 5 and x lt 4} (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y) : y is divisible by x } (iv) Relation R in the set Z of all integers defined as R = {(x, y) : x – y is an integer} (v) Relation R in the set A of human beings in a town at a particular time given by (a) R = {(x, y) : x and y work at the same place} (b) R = {(x, y) : x and y live in the same locality} (c) R = {(x, y) : x is exactly 7 cm taller than y } (d) R = {(x, y) : x is wife of y } (e) R = {(x, y) : x is father of y }

Determine whether each of the following relations are reflexive, symmetric and transitive : (i) Relation R in the set A = {1, 2, 3,......, 13, 14} defined as R={(x,y): 3x-y=0} (ii) Relation R in the set N of natural numbers defined as R={(x,y): y=x+5 " and " x lt 4} (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} defined as R = {(x, y): y is divisible by x}. iv) Relation R in the set Z, of all integers defined as R = {(x, y) : x -y is an integer}.

Determine whether each of the following relations are reflexive, symmetric and transitive : Relation R in the set A = {1, 2, 3,......, 13, 14} defined as R={(x,y): 2x-y=0}

Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A = {1, 2, 3, ..., 13, 14} defined as R = {(x, y) : 3x – y = 0}