Home
Class 11
MATHS
If f (x) = 3x -1, g (x) =x ^(2) + 1 th...

If ` f (x) = 3x -1, g (x) =x ^(2) + 1 ` then `f [g (x)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x)=2x-1, g(x)=x^(2) , then (3f-2g)(x)=

If f(x) =x^(2) +1, g(x) = x^(2) - 5x+6 , find f+g, f-g, f/g .

If f (x) =(x^(2) -1) " and " g (x) =(2x +3) " then " (g o f) (x) =?

If f(x)=3x+1,g(x)=x^3+2 , then (f+g)/(fg) (0) =?

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

Let f and g be two real values functions defined by f ( x ) = x + 1 and g ( x ) = 2 x − 3 . Find 1) f + g , 2) f − g , 3) f / g

If f(x) =log e (1 + x)/(1 - x) and g(x) = (3x + x^3)/(1 + 3x^2) , then prove that f[g(x)] = 3 cdot f(x) .