Home
Class 10
MATHS
" ग "y=ae^(2x)+be^(-3x)+ce^(x)...

" ग "y=ae^(2x)+be^(-3x)+ce^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the differential equation corresponding to jy=ae^(2x)+be^(-3x)+ce^(x) where a,b,c are arbitrary constants.

The order of the differential equation whose solution is ae^(x) + be^(2x) + ce^(3x) + d = 0 is

y = ae^(3x) + be^(-2x)

y = ae^(3x) + be^(-2x)

y = ae^(3x) + be^(-2x)

(1) y = ae^(4x) -be^(-3x) +c (2) xy = ae^(5x) +be^(-5x)

Find the differential equation conistent with y=ae^(3x)+be^(5x)+ce^(7x) , where a,b,c are arbitrary constants.

Prove that lim_(x rarr oo) (ae^(x)+be^(-x))/(ce^(x)+de^(-x))=(a)/(c)[2ltelt3,c!=0].

The differential equation satisfying all the curves y = ae^(2x) + be^(-3x) , where a and b are arbitrary constants, is

The differential equation by eliminating A, B, C from y = Ae^(2x) + Be^(3x) + Ce^(-2x) is