Home
Class 12
MATHS
" If "tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)...

" If "tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2)," then prove that "xy+yz+zx=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1) z=(3pi)/(2) then prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y=(pi)/(2), then prove that xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

"If " tan^(-1) x+ tan^(-1) y+tan ^(-1)z=(pi)/(2) , show that , xy+yz+zx =1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If "tan"^(-1)x+"tan"^(-1)y+"tan"^(-1)z=pi/(2) , show that xy+yz+zx=1

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these