Home
Class 12
MATHS
" If "log y=sin^(-1)x," show that,"(1-x^...

" If "log y=sin^(-1)x," show that,"(1-x^(2))(d^(2)y)/(dx^(2))=x(dy)/(dx)+y

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx) =0 .

If y= sin^(-1)x , show that (1 -x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2