Home
Class 11
MATHS
[" 30."cot A cot B=2],[cos(A+B)=3/5rArr ...

[" 30."cot A cot B=2],[cos(A+B)=3/5rArr sin A*sin B=]

Promotional Banner

Similar Questions

Explore conceptually related problems

cot A cot B=2,cos(A+B)=(3)/(5)rArr sin A sin B=

Cot A Cot B = 2, Cos (A+B) = 3/5 => sinA.sin B = (i) 2/5 (ii) 1/5 (iii) 4/5 (iv) 3/5

If Cot A Cot B = 2 & Cos (A+B) = 3/5 then Sin A Sin B

cot A+cot B+cot C+(cos(A+B+C))/(sin A sin B sin C)=

If A and B are complementary angles, prove that : cot A cot B - sin A cos B - cos A sin B = 0

Prove that : cot^(2) A - cot^(2) B = (cos^(2) A - cos^(2) B)/ (sin^(2) A sin^(2) B) = cosec^(2) A - cosec^(2)B

Prove that: (cos 2A cos 3A-cos 2A cos 7A + cos A cos 10A)/(sin 4A sin 3A -sin 2A sin 5A + sin 4A sin 7A)= cot 6A cot 5A .

Prove that: (cos 2A cos 3A -cos 2A cos 7A + cos A cos 10A)/("sin" 4A sin 3A - sin 2A sin 5A + sin 4A sin 7A) = cot 6A cot 5A

Show that cot(A+B)cot(A-B)=(cos^2A-sin^2B)/(sin^2A-sin^2B)