Home
Class 10
MATHS
(tan^(2)A-tan^(2)B)=((sin^(2)A-sin^(2)B)...

(tan^(2)A-tan^(2)B)=((sin^(2)A-sin^(2)B))/(cos^(2)A cos^(2)B)=((cos^(2)B-cos^(2)A))/(cos^(2)B cos^(2)A)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

Show that tan^2A-tan^2B=(sin^2A-sin^2B)/(cos^2Acos^2B)

Prove the following tan^2A- tan^ 2B=(sin^2A-sin^2B)/(cos^2A*cos^2B) =(cos^2B-cos^2A) /(cos^2A*cos^2B)

Show that: tan(A+B).tan(A-B)=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B).

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

Prove that tan^2A - tan^2B = (sin(A+B).sin(A-B))/(cos^2A.cos^2B

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=