Home
Class 12
MATHS
If z1 and z2 are two complex numbers su...

If `z_1 and z_2 ` are two complex numbers such that `|(barz_1-2barz_2)(2-z_1barz_2)|=1` then (A) `|z_1|=1, if |z_2|!=1` (B) `|z_1|=2, if |z_2|!=1` (C) `|z_2|=2, if |z_1|!=1` (D) `|z_2|=1, if |z_1|!=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 , and z_2 be two complex numbers prove that bar(z_1+-z_2)=barz_1+-barz_2

If z_1 , and z_2 be two complex numbers prove that z_1barz_1=|z_1|^2

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

If z_1 and z_2 be two complex numbers such that abs((z_1-2z_2)/(2-z_1barz_2))=1 and abs(z_2) ne1 , what is the value of abs(z_1) ?

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If z_(1)+z_(2) are two complex number and |(barz_(1)-2bar z_(2))/(2-z_(1)barz_(2))|=1, |z_(1)| ne , then show that |z_(1)|=2 .