Home
Class 12
MATHS
The line lx + my + n = 0 is a normal to...

The line `lx + my + n = 0` is a normal to `(x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1`, provided

Promotional Banner

Similar Questions

Explore conceptually related problems

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

The line lx+my+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. then prove that (a^(2))/(l^(2))+(b^(2))/(m^(2))=((a^(2)-b^(2))^(2))/(n^(2))

The condition that the line lx + my + n= 0 to be a normal to the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2))= 1 is

Find the coodition that the straight line lx+my+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If straight line lx+my+n=0 is a tangent of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)l^(2)+b^(2)m^(2)=n^(2)

Find the condition that the line lx + my = n may be a normal to the ellipse x^(2)/(a^(2)) + y^(2)/b^(2) =1

If lx+ my = 1 is a normal to the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1, "then" a^(2) m^(2) - b^(2) l^(2) =

If the line lx+my=1 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then (a^(2))/(l^(2))+(b^(2))/(m^(2))=

Find the condition that line lx + my - n = 0 will be a normal to the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 .