Home
Class 12
MATHS
[" Question "4^(***)],[" If "f(x)=(1-sin...

[" Question "4^(***)],[" If "f(x)=(1-sin x)/((pi-2x)^(2))," when "x!=(pi)/(2)" and "f((pi)/(2))=lambda," then "f(x)" will be continuous function at "],[x=pi/2," where "lambda=],[[" (a) "1/8," (b) "1/4," (c) "1/2," (d) none of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1-sin x)/((pi-2x)^(2)), when x!=(pi)/(2) and f((pi)/(2))=lambda, the f(x) will be continuous function at x=(pi)/(2), where lambda=?( a) (1)/(8)( b ) (1)/(4) (c) (1)/(2) (d) none of these

If f(x)=(1-sinx)/((pi-2x)^2) ,when x!=pi/2 and f(pi/2)=lambda, the f(x) will be continuous function at x=pi/2 ,where lambda=? (a) 1/8 (b) 1/4 (c) 1/2 (d) none of these

Let f(x) = (1-sin x)/((pi - 2x)^(2)),"where x" ne pi//2 and f(pi//2) = k . The value of k which makes f continuous at pi//2 is :

Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)andf((pi)/(2))=lambda What is the value of lambda . If the function is continuous at x=(pi)/(2) ?

Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)andf((pi)/(2))=lambda What is underset(xrarr(pi)/(2))limf(x) equal to?

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

f(x)= {{:((1-sinx)/(pi-2x)","xne(pi)/(2)),(lambda ","" "x=(pi)/(2)):} If f(x) is continious of x= (pi)/(2) then lambda =…………….

The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2) . The value of f((pi)/(2)) such that f is continuous at x=(pi)/(2) is

If : f(x) {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ", ... " x = pi//2):} is continuous at x = pi//2 , then : lambda =

Let f(x)=(1-sin x)/((pi-2x)^(2))*(ln(sin x))/(ln(1+pi^(2)-4 pi x+4x^(2))),x!=(pi)/(2). The value of f((pi)/(2)) so that the function is continuous at x=(pi)/(2) is: