Home
Class 12
MATHS
" 13."f(x)=sqrt(2{x}^(2)-3{x}+1,)x in[-1...

" 13."f(x)=sqrt(2{x}^(2)-3{x}+1,)x in[-1,1]" ,where "{*}" denotes the fractional part of "x" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

The domain of f(x) = sqrt( 2 {x}^2 - 3 {x} + 1) where {.} denotes the fractional part in [-1,1]

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

Domain of f(x)=sqrt(2{x}^(2)-3{x}+1 (where {} denotes the fraction part),in [-1,1] is,

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

lim_(x rarr1)(x sin{x})/(x-1)," where "{x}" denotes the fractional part of "x," is equal to "