Home
Class 11
MATHS
" Q."1" If "sin x+cos x=sqrt(2)cos alpha...

" Q."1" If "sin x+cos x=sqrt(2)cos alpha rArr x=

Promotional Banner

Similar Questions

Explore conceptually related problems

General solution of the equation sin x + cos x = sqrt(2) cdot cos alpha is x =

If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 (ii) If "sin" x + cos x =sqrt(2) cos x show that: sqrt2 sin x = cos x - sin x

If sin x + cos x =sqrt2 cos x , show that : sqrt2 sin x =cos x- sin x .

If cos x+sin x=sqrt(2)cos x, prove that that cos x-sin x=sqrt(2)sin x

" Q."3 (d)/(dx){(sin x+cos x)/(sqrt(1+sin2x))} =

If sin x + sin y> = cos alpha cos x, AA x in R then sin y + cos alpha =

If int((sin^((3)/(2))x+cos^((3)/(2))x)dx)/(sqrt(sin^(3)x cos^(3)x sin(x-alpha)))=a sqrt(cos alpha tan x-sin alpha)+b sqrt(cos alpha-sin alpha cot x)+c then

If (cos x-cos alpha) / (cos x-cos beta) = (sin ^ (2) alpha cos beta) / (sin ^ (2) beta cos alpha) then cos x =

If (cos x-cos alpha) / (cos x-cos beta) = (sin ^ (2) alpha cos beta) / (sin ^ (2) beta cos alpha) then cos x =

Prove : int ( cos 2x - cos 2 alpha )/(cos x - cos alpha ) dx = 2(x cos alpha + sin x) +c