Home
Class 12
MATHS
[y=e^(a cos^(-1)x),-1<=x<=1," show that ...

[y=e^(a cos^(-1)x),-1<=x<=1," show that "],[x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(a cos^(-1)x),-2lexle1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx-a^(2)y=0

If y=e^(a cos^-1x), -1lexle1 show that: (1 - x^2) y_2 - xy_1-a^2y = 0

if y=e^(a cos^-1x),-1lexle1 , show that dy/dx= (-ae^(acos^-1x))/(sqrt(1-x^2))

If y = e^(a cos^(-1)), - 1 le x le 1 , the which of these are correct ?

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If y = e^(a cos^(-1)x) show that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx) -a^(2)y= 0 . Where -1 le x le 1

If y = e^(m cos^(-1) x) (1-x^2)y_2-xy_1 = m^2y