Home
Class 11
MATHS
If f (x) = cot x, then prove that : f(...

If f (x) = cot x, then prove that :
`f(-x)=-f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)=tan x , the prove that :f(x)+f(-x)=0

If (x)=tan x , the prove that :f(x)+f(-x)=0

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

If f(x) = (x-1)/(x+1) , then prove that (f(x)-f(y))/(1+f(x)f(y))=(x-y)/(1+xy) .

If f(x)=x|x|, then prove that f'(x)=2|x|

If f(x)=x-(1)/(x) then prove that f(x)=-f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))