Home
Class 12
MATHS
The value of lim(n->oo)sum(k=1)^n(6^k)/(...

The value of `lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=