Home
Class 12
MATHS
" If "A=[[2,-1],[-1,2]]," verify "A^(2)-...

" If "A=[[2,-1],[-1,2]]," verify "A^(2)-4A+3I=O," where "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(2,-1),(-1,2):}] , verify A^(2)-4A+3I=0 , where I=[{:(1,0),(0,1):}] and O=[{:(0,0),(0,0):}] . Hence find A^(-1) .

If A=[(2, 3),( 1, 2)] , verify that A^2-4A+I=O , where I=[(1, 0),( 0, 1)] and O=[(0, 0),( 0, 0)] . Hence, find A^(-1) .

If A=[2312], verify that A^(2)-4A+I=O where I=[1001] and O=[0000]. Hence find A^(-1).

If A=[[3,1],[-1,2]] prove that A^2-5A+7I=O ,where I is unit matrix of order 2.

Find the inverse of each of the matrices given below : If A=[(3,2),(2,1)] , verify that A^(2)-4A-I=O, and "hence " "find "A^(-1) .

If the matrix A=[[5,3],[12,7]] , then verify that A^2-12-I=O where I is a unit matrix.

If A=({:(2,-1),(-1,2):}) " and " A^(2)-4A+3I=0 where I is the unit matrix of order 2, then find A^(-1) .

IF A = ([2,-1],[-1,2]) and A^2-4A+3I = 0 , where I is the unit matric or order 2, then find A^(-1) .

If A=[(2,-1),(-1,2)] , then show that A^(2) -4A +3I=O .