Home
Class 14
MATHS
(v)((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^...

(v)((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^(13)

Promotional Banner

Similar Questions

Explore conceptually related problems

(iii) ((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^(1/3)

Simplify: (i)\ ((sqrt(2))/5)^8\ -:((sqrt(2))/5)^(13)

The following are the steps involved in finding the value of x-y from (sqrt(8)-sqrt(5))/(sqrt(8)+sqrt(5))=x-ysqrt(40) . Arrange them in sequential order. (A) (13-2sqrt(40))/(8-5)=x-ysqrt(40) (B) ((sqrt(8))^(2)+(sqrt(5))^(2)-2(sqrt(8))(sqrt(5)))/((sqrt(8))^(2)-(sqrt(5))^(2))=x-ysqrt(40) (C) x-y=(11)/(3) (D) x=(13)/(3) and y=(2)/(3) (E) ((sqrt(8)-sqrt(5))(sqrt(8)-sqrt(5)))/((sqrt(8)+sqrt(5))(sqrt(8)-sqrt(5)))=x-ysqrt(40)

8. (sqrt(5)-2)^(2)=?-sqrt(80)

If the ellipse (x^(2))/(a^(2)-7)+(y^(2))/(13-5a)=1 is inscribed in a square of side length sqrt(2)a, then a is equal to (6)/(5)(-oo,-sqrt(7))uu(sqrt(7),(13)/(5))(-oo,-sqrt(7))uu((13)/(5),sqrt(7),) no such a exists

Simplify the following (sqrt2/5)^8divide(sqrt2/5)^(13)

(3)/(sqrt(8)-sqrt(2)+sqrt(5))

If the ellipse (x^2)/(a^2-7)+(y^2)/(13=5a)=1 is inscribed in a square of side length sqrt(2)a , then a is equal to 6/5 (-oo,-sqrt(7))uu(sqrt(7),(13)/5) (-oo,-sqrt(7))uu((13)/5,sqrt(7),) no such a exists

The sum of the first n terms of the series (1)/(sqrt(2)+sqrt(5))+(1)/(sqrt(5)+sqrt(8))+(1)/(sqrt(8)+sqrt(11))+ .... is