Home
Class 12
MATHS
In DeltaABC, if A+C=2B, prove that 2 cos...

In `DeltaABC`, if `A+C=2B`, prove that `2 cos ((A-C)/2) = (a+c)/sqrt(a^2 -ac+c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC, if A+C=2B, prove that 2cos((A-C)/(2))=(a+c)/(sqrt(a^(2)-ac+c^(2)))

In DeltaABC , if 2 cos ((A-C)/2) = (a+c)/sqrt(a^2 -ac+c^2) [Note: All symbols used have their usual meaning in triangle ABC]

In triangle ABC if the angles A,B and C be in A.P. then show that 2cos ((A-C)/2)=(a+c)/sqrt(a^2-ac+c^2)

In DeltaABC , prove that: (b+c)cos(B+C)/(2)=acos(B-C)/(2)

In DeltaABC , prove that: (b+c)cos(B+C)/(2)=acos(B-C)/(2)

For any DeltaABC , prove that sin ((B-C)/2)=(b-c)/a cos (A/2)

In a DeltaABC the angles A, B, C are in A.P. show that 2cos""(A-C)/2=(a+c)/sqrt((a^(2)-ac+c^(2)))

In DeltaABC , prove that: (bcos^(2)C)/2+(c cos^(2)B)/2=s

In DeltaABC , prove that: (bcos^(2)C)/2+(c cos^(2)B)/2=s

For any DeltaABC , prove that (a+b)/c=cos((A-B)/2)/sin(c/2)