Home
Class 12
MATHS
[9.],[x cos^(-1)x]...

[9.],[x cos^(-1)x]

Promotional Banner

Similar Questions

Explore conceptually related problems

9. int(cos^(-1)x)^(2)dx

The number of values of x for which sin^(-1)(x^(2)-x^(4)/3+x^(6)/9…..)+cos^(-1)(x^(4)-x^(8)/3+x^(12)/9….)=pi/2," where "0 le abs(x) lt sqrt(3) , is

The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9...)+cos^(-1)(x^4-(x^8)/3+(x^(12))/9ddot)=pi/2, where 0lt=|x|

Differentiate the following w.r.t. x: cos^(-1) (frac {1- 9^x }{1 + 9^x})

Solve for x, cos (2sin^(-1)x)=(1)/(9), x gt 0 .

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

If sin^(-1)(x-(x^(2))/(3)+(x^(3))/(9)-...-oo)+cos^(-1)(x^(2)-(x^(3))/(3)+(x^(4))/(9)-...-oo)=(pi)/(2) where 0<|x|<3 then the value of x satisfying the equation is