Home
Class 12
MATHS
" 2.If "y=at^(2)+2bt+c" and "t=ax^(2)+2b...

" 2.If "y=at^(2)+2bt+c" and "t=ax^(2)+2bx+c," then "(d^(3)y)/(dx^(3))" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=at^(2)+2bt+c and t=ax^(2)+2bx+c then (d^(2)y)/(dx^(2)) equals

If y=at^2+2bt-c and t = ax^2+2bx+c , then (d^3y)/(dx^3) equals

If y=at^2+2bt-c and t = ax^2+2bx+c , then (d^3y)/(dx^3) equals

If y=at^(2)+2bt+c&t=ax^(2)+2bx+c then (d^(3)y)/(dx^(3)) equals 24a^(2)(at+b)(b)24a(ax+b)^(2)24a(at+b)^(2)(d)24a^(2)(ax+b)

"If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

if y^(2)=ax^(2)+2bx+c then y^(3)(d^(2)y)/(dx^(2))

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If y^(2)=ax^(2)+2bx+c," then "y^(3)y_(2)=

If y =sin (ax^(2) +bx +c ) then (dy)/(dx) =