Home
Class 10
MATHS
विभाजन एल्गोरिथ्म का प्रयोग करके , निम्...

विभाजन एल्गोरिथ्म का प्रयोग करके , निम्न में P(x) को g(x) से भाग देने पर भागफल तथा शेषफल ज्ञात कीजिए :
`(i) p(x) =x^(2) -3x^(2)+5x-3, g(x) =x^(2)-2`
`(ii) p(x) =x^(4) -3x^(2)+4x+5 , g(x) =x^(2) +1-x`
`(iii) p(x) =x^(4) -5x +6.`

Promotional Banner

Similar Questions

Explore conceptually related problems

p(x)=4x^(5)-3x^(4)-5x^(3)+x^(2)-8, then find p(-1)

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

If p(x)=4x^(2)-3x+6 find : (i) p(4) (ii) p(-5)

If p(x)=4x^(2)-3x+6 find : (i) p(4) (ii) p(-5)

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following : i] p(x) = x^(3) - 3x^(2) + 5x - 3, g(x) = x^(2) - 2 ii] p(x) = x^(4) - 3x^(2) + 4x + 5, g(x) = x^(2) + 1 - x iii] p (x) = x^(4) - 5 x + 6 g(x) = 2 - x^(2)

p(x) = x^(3) + 4x^(2) + 5x -2 then p(1) = ……………

If p(x)=x^(3)-5x^(2)+4x-3 andg(x)=x-2 show that p(x) is not a multiple of g(x).

(i) If p(x)=3x^(2)-5x+6 , find p(2) . (ii) If q(x)=x^(2)-2sqrt(2)x+1 , find q(2sqrt(2)) . (iii) If r(x)=5x-4x^(2)+3 find r(-1) .