Home
Class 12
MATHS
If a^x=b , b^y=c ,c^z=a and x=(log)b a^...

If `a^x=b , b^y=c ,c^z=a` and `x=(log)_b a^2; y=(log)_c b^3& z=(log)_a c^k ,` where `a,b, c >0` &` a , b , c!=1` then `k` is equal to a.`1/5` b. `1/6` c.`(log)_(64)2` d. `(log)_(32)2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2, y=(log)_c b^3,z=(log)_a c^k , where a,b, c >0 and a , b , c!=1 then k is equal to a. 1/5 b. 1/6 c. (log)_(64)2 d. (log)_(32)2

IF a^x=b,b^y=c,c^z=a,x=log_b a^(k1),y=log_c b^(k2),z=log_a c^(k3) , find the minimum value of 3k_1+6k_2+12k_3 .

If x=1+(log)_a b c , y=1+(log)_b c a and z=1+(log)_c a b , then prove that x y z=x y+y z+z x

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N), where N >0 and N!=1, a , b , c >0,!=1 , then prove that b^2=a c

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot

If x ,y ,z are in G.P. and a^x=b^y=c^z , then (log)_b a=(log)_a c b. (log)_c b=(log)_a c c. (log)_b a=(log)_c b d. none of these

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c .

If y^(2)=xz and a^(x)=b^(y)=c^(z), then prove that (log)_(a)b=(log)_(b)c