Home
Class 12
MATHS
Let f(x)=int0^(sin^2x) sin^-1(sqrt(t))dt...

Let `f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt`, then (A) `f(x)` is a constant function (B) `f(pi/4)=0` (C) `f(pi/3)=pi/4` (D) `f(pi/4)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt , then f(x+pi) is (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=int_(0)^(cos^(2)x)sec x(sqrt(t))/(1+t^(3))dt then (i) f'(pi)=0( ii) f'(pi)=1 (iii) f'(2 pi)=1( iv )f'(2 pi)=-1