Home
Class 12
MATHS
" 6.*** If "alpha" ,"beta" be two distin...

" 6.*** If "alpha" ,"beta" be two distinct angles satisying the equation "a cos theta+b sin theta=c," show that: "cos(alpha+beta)=(a^(2)-b^(2))/(2),2^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha and beta be the two different roots of equation a cos theta+b sin theta=c ,prove that : tan(alpha+beta)=(2ab)/(a^(2)-b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta be two different roots of equation,a cos theta+b sin theta=c prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta be two roots of the equation a cos theta+ b sin theta=c , show that sin alpha+ sin beta=(2bc)/(a^(2)+b^(2)) ,sin alpha sin beta =(c^(2)-a^(2))/(a^(2)+b^(2)) and tan (alpha+ beta)=(2ab)/(a^(2)-b^(2))